\(\int x \arcsin (a x)^4 \, dx\) [36]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 8, antiderivative size = 111 \[ \int x \arcsin (a x)^4 \, dx=\frac {3 x^2}{4}-\frac {3 x \sqrt {1-a^2 x^2} \arcsin (a x)}{2 a}+\frac {3 \arcsin (a x)^2}{4 a^2}-\frac {3}{2} x^2 \arcsin (a x)^2+\frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}-\frac {\arcsin (a x)^4}{4 a^2}+\frac {1}{2} x^2 \arcsin (a x)^4 \]

[Out]

3/4*x^2+3/4*arcsin(a*x)^2/a^2-3/2*x^2*arcsin(a*x)^2-1/4*arcsin(a*x)^4/a^2+1/2*x^2*arcsin(a*x)^4-3/2*x*arcsin(a
*x)*(-a^2*x^2+1)^(1/2)/a+x*arcsin(a*x)^3*(-a^2*x^2+1)^(1/2)/a

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4723, 4795, 4737, 30} \[ \int x \arcsin (a x)^4 \, dx=\frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}-\frac {3 x \sqrt {1-a^2 x^2} \arcsin (a x)}{2 a}-\frac {\arcsin (a x)^4}{4 a^2}+\frac {3 \arcsin (a x)^2}{4 a^2}+\frac {1}{2} x^2 \arcsin (a x)^4-\frac {3}{2} x^2 \arcsin (a x)^2+\frac {3 x^2}{4} \]

[In]

Int[x*ArcSin[a*x]^4,x]

[Out]

(3*x^2)/4 - (3*x*Sqrt[1 - a^2*x^2]*ArcSin[a*x])/(2*a) + (3*ArcSin[a*x]^2)/(4*a^2) - (3*x^2*ArcSin[a*x]^2)/2 +
(x*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^3)/a - ArcSin[a*x]^4/(4*a^2) + (x^2*ArcSin[a*x]^4)/2

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} x^2 \arcsin (a x)^4-(2 a) \int \frac {x^2 \arcsin (a x)^3}{\sqrt {1-a^2 x^2}} \, dx \\ & = \frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}+\frac {1}{2} x^2 \arcsin (a x)^4-3 \int x \arcsin (a x)^2 \, dx-\frac {\int \frac {\arcsin (a x)^3}{\sqrt {1-a^2 x^2}} \, dx}{a} \\ & = -\frac {3}{2} x^2 \arcsin (a x)^2+\frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}-\frac {\arcsin (a x)^4}{4 a^2}+\frac {1}{2} x^2 \arcsin (a x)^4+(3 a) \int \frac {x^2 \arcsin (a x)}{\sqrt {1-a^2 x^2}} \, dx \\ & = -\frac {3 x \sqrt {1-a^2 x^2} \arcsin (a x)}{2 a}-\frac {3}{2} x^2 \arcsin (a x)^2+\frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}-\frac {\arcsin (a x)^4}{4 a^2}+\frac {1}{2} x^2 \arcsin (a x)^4+\frac {3 \int x \, dx}{2}+\frac {3 \int \frac {\arcsin (a x)}{\sqrt {1-a^2 x^2}} \, dx}{2 a} \\ & = \frac {3 x^2}{4}-\frac {3 x \sqrt {1-a^2 x^2} \arcsin (a x)}{2 a}+\frac {3 \arcsin (a x)^2}{4 a^2}-\frac {3}{2} x^2 \arcsin (a x)^2+\frac {x \sqrt {1-a^2 x^2} \arcsin (a x)^3}{a}-\frac {\arcsin (a x)^4}{4 a^2}+\frac {1}{2} x^2 \arcsin (a x)^4 \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.86 \[ \int x \arcsin (a x)^4 \, dx=\frac {3 a^2 x^2-6 a x \sqrt {1-a^2 x^2} \arcsin (a x)+\left (3-6 a^2 x^2\right ) \arcsin (a x)^2+4 a x \sqrt {1-a^2 x^2} \arcsin (a x)^3+\left (-1+2 a^2 x^2\right ) \arcsin (a x)^4}{4 a^2} \]

[In]

Integrate[x*ArcSin[a*x]^4,x]

[Out]

(3*a^2*x^2 - 6*a*x*Sqrt[1 - a^2*x^2]*ArcSin[a*x] + (3 - 6*a^2*x^2)*ArcSin[a*x]^2 + 4*a*x*Sqrt[1 - a^2*x^2]*Arc
Sin[a*x]^3 + (-1 + 2*a^2*x^2)*ArcSin[a*x]^4)/(4*a^2)

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.05

method result size
derivativedivides \(\frac {\frac {\arcsin \left (a x \right )^{4} \left (a^{2} x^{2}-1\right )}{2}+\arcsin \left (a x \right )^{3} \left (a x \sqrt {-a^{2} x^{2}+1}+\arcsin \left (a x \right )\right )-\frac {3 \arcsin \left (a x \right )^{2} \left (a^{2} x^{2}-1\right )}{2}-\frac {3 \arcsin \left (a x \right ) \left (a x \sqrt {-a^{2} x^{2}+1}+\arcsin \left (a x \right )\right )}{2}+\frac {3 \arcsin \left (a x \right )^{2}}{4}+\frac {3 a^{2} x^{2}}{4}-\frac {3 \arcsin \left (a x \right )^{4}}{4}}{a^{2}}\) \(117\)
default \(\frac {\frac {\arcsin \left (a x \right )^{4} \left (a^{2} x^{2}-1\right )}{2}+\arcsin \left (a x \right )^{3} \left (a x \sqrt {-a^{2} x^{2}+1}+\arcsin \left (a x \right )\right )-\frac {3 \arcsin \left (a x \right )^{2} \left (a^{2} x^{2}-1\right )}{2}-\frac {3 \arcsin \left (a x \right ) \left (a x \sqrt {-a^{2} x^{2}+1}+\arcsin \left (a x \right )\right )}{2}+\frac {3 \arcsin \left (a x \right )^{2}}{4}+\frac {3 a^{2} x^{2}}{4}-\frac {3 \arcsin \left (a x \right )^{4}}{4}}{a^{2}}\) \(117\)

[In]

int(x*arcsin(a*x)^4,x,method=_RETURNVERBOSE)

[Out]

1/a^2*(1/2*arcsin(a*x)^4*(a^2*x^2-1)+arcsin(a*x)^3*(a*x*(-a^2*x^2+1)^(1/2)+arcsin(a*x))-3/2*arcsin(a*x)^2*(a^2
*x^2-1)-3/2*arcsin(a*x)*(a*x*(-a^2*x^2+1)^(1/2)+arcsin(a*x))+3/4*arcsin(a*x)^2+3/4*a^2*x^2-3/4*arcsin(a*x)^4)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.74 \[ \int x \arcsin (a x)^4 \, dx=\frac {{\left (2 \, a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{4} + 3 \, a^{2} x^{2} - 3 \, {\left (2 \, a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{2} + 2 \, {\left (2 \, a x \arcsin \left (a x\right )^{3} - 3 \, a x \arcsin \left (a x\right )\right )} \sqrt {-a^{2} x^{2} + 1}}{4 \, a^{2}} \]

[In]

integrate(x*arcsin(a*x)^4,x, algorithm="fricas")

[Out]

1/4*((2*a^2*x^2 - 1)*arcsin(a*x)^4 + 3*a^2*x^2 - 3*(2*a^2*x^2 - 1)*arcsin(a*x)^2 + 2*(2*a*x*arcsin(a*x)^3 - 3*
a*x*arcsin(a*x))*sqrt(-a^2*x^2 + 1))/a^2

Sympy [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.94 \[ \int x \arcsin (a x)^4 \, dx=\begin {cases} \frac {x^{2} \operatorname {asin}^{4}{\left (a x \right )}}{2} - \frac {3 x^{2} \operatorname {asin}^{2}{\left (a x \right )}}{2} + \frac {3 x^{2}}{4} + \frac {x \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}^{3}{\left (a x \right )}}{a} - \frac {3 x \sqrt {- a^{2} x^{2} + 1} \operatorname {asin}{\left (a x \right )}}{2 a} - \frac {\operatorname {asin}^{4}{\left (a x \right )}}{4 a^{2}} + \frac {3 \operatorname {asin}^{2}{\left (a x \right )}}{4 a^{2}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

[In]

integrate(x*asin(a*x)**4,x)

[Out]

Piecewise((x**2*asin(a*x)**4/2 - 3*x**2*asin(a*x)**2/2 + 3*x**2/4 + x*sqrt(-a**2*x**2 + 1)*asin(a*x)**3/a - 3*
x*sqrt(-a**2*x**2 + 1)*asin(a*x)/(2*a) - asin(a*x)**4/(4*a**2) + 3*asin(a*x)**2/(4*a**2), Ne(a, 0)), (0, True)
)

Maxima [F]

\[ \int x \arcsin (a x)^4 \, dx=\int { x \arcsin \left (a x\right )^{4} \,d x } \]

[In]

integrate(x*arcsin(a*x)^4,x, algorithm="maxima")

[Out]

1/2*x^2*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^4 + 2*a*integrate(sqrt(a*x + 1)*sqrt(-a*x + 1)*x^2*arctan2(
a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^3/(a^2*x^2 - 1), x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.14 \[ \int x \arcsin (a x)^4 \, dx=\frac {\sqrt {-a^{2} x^{2} + 1} x \arcsin \left (a x\right )^{3}}{a} + \frac {{\left (a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{4}}{2 \, a^{2}} + \frac {\arcsin \left (a x\right )^{4}}{4 \, a^{2}} - \frac {3 \, \sqrt {-a^{2} x^{2} + 1} x \arcsin \left (a x\right )}{2 \, a} - \frac {3 \, {\left (a^{2} x^{2} - 1\right )} \arcsin \left (a x\right )^{2}}{2 \, a^{2}} - \frac {3 \, \arcsin \left (a x\right )^{2}}{4 \, a^{2}} + \frac {3 \, {\left (a^{2} x^{2} - 1\right )}}{4 \, a^{2}} + \frac {3}{8 \, a^{2}} \]

[In]

integrate(x*arcsin(a*x)^4,x, algorithm="giac")

[Out]

sqrt(-a^2*x^2 + 1)*x*arcsin(a*x)^3/a + 1/2*(a^2*x^2 - 1)*arcsin(a*x)^4/a^2 + 1/4*arcsin(a*x)^4/a^2 - 3/2*sqrt(
-a^2*x^2 + 1)*x*arcsin(a*x)/a - 3/2*(a^2*x^2 - 1)*arcsin(a*x)^2/a^2 - 3/4*arcsin(a*x)^2/a^2 + 3/4*(a^2*x^2 - 1
)/a^2 + 3/8/a^2

Mupad [F(-1)]

Timed out. \[ \int x \arcsin (a x)^4 \, dx=\int x\,{\mathrm {asin}\left (a\,x\right )}^4 \,d x \]

[In]

int(x*asin(a*x)^4,x)

[Out]

int(x*asin(a*x)^4, x)